幸运8平台彩票 AlphaLISA® Acceptor beads conjugated to a mouse monoclonal anti-Dig (digoxin) antibody. These beads can be used to capture Dig-labeled proteins, peptides, and other biomolecules to create AlphaLISA no-wash assays.
false false项目已成功添加到购物车
幸运8平台彩票 For research use only. Not for use in diagnostic procedures.
These beads can be used to capture Dig-labeled proteins, peptides, and other biomolecules, and can be used in conjunction with Alpha Donor beads to create AlphaLISA® no-wash assays for:
In a typical AlphaLISA assay, 1 mg of Acceptor beads is sufficient to run 1,000-2,000 wells using a 50 µL reaction volume.
Features:
幸运8平台彩票AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym ""Alpha"" stands for amplified luminescent proximity homogeneous assay. As the name implies, some of the key features of these technologies are that they are non-radioactive, homogeneous proximity assays. Binding of molecules captured on the beads leads to an energy transfer from one bead to the other, ultimately producing a luminescent/fluorescent signal. To understand how a signal is produced, one must begin with an understanding of the beads. AlphaScreen and AlphaLISA assays require two bead types: Donor beads and Acceptor beads. Each bead type contains a different proprietary mixture of chemicals, which are key elements of the AlphaScreen technology. Donor beads contain a photosensitizer, phthalocyanine, which converts ambient oxygen to an excited and reactive form of O2, singlet oxygen, upon illumination at 680 nm. Please note that singlet oxygen is not a radical; it is molecular oxygen with a single excited electron. Like other excited molecules, singlet oxygen has a limited lifetime prior to falling back to ground state. Within its 4 µsec half-life, singlet oxygen can diffuse approximately 200 nm in solution. If an Acceptor bead is within that proximity, energy is transferred from the singlet oxygen to thioxene derivatives within the Acceptor bead, subsequently culminating in light production at 520-620 nm (AlphaScreen) or at 615 nm (AlphaLISA). In the absence of an Acceptor bead, singlet oxygen falls to ground state and no signal is produced. This proximity-dependent chemical energy transfer is the basis for AlphaScreen's homogeneous nature.
抗体偶联物 | Anti-DIG |
---|---|
自动化兼容 | Yes |
珠型或核心珠型 | AlphaLISA Acceptor |
检测方法 | Alpha |
实验类型 | In vitro |
产品品牌名称 | AlphaLISA |
运输条件 | 蓝冰 |
产品尺寸 | 25 mg |
幸运8平台彩票The interactions and bindingof proteins are implicated in a large number of biological processes. The needfor an efficient, highly sensitive assay to study large protein interactions is increasingly important. Alpha Technology is a highly flexible, homogeneous, no-wash assay ideal for the measurement of protein interactions and complexes as large as 200 nm in size
Alpha has been used to study a wide variety of interactions, including protein:protein, protein:peptide, protein:DNA, protein:RNA, protein:carbohydrate, protein:small molecule, receptor:ligand, and nuclear receptor:ligand interactions. Both cell-based and biochemical interactions have been monitored, and applications such as phage display, ELISA, and EMSA (electrophoretic mobility shift assay) have been adapted to Alpha.
This guide presents the simple conversion of an ELISA or other immunoassay to an AlphaLISA® immunoassay.
幸运8平台彩票AlphaScreen® and AlphaLISA® are bead-based assay technologies used to study biomolecular interactions in a microplate format. The acronym “Alpha” stands for Amplified Luminescent Proximity Homogeneous Assay. The assay does not require any washing steps. Binding of proteins or other binding partners captured on the beads leads to an energy transfer from one bead to the other, ultimately producing a luminescent signal.